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Executive Summary 
Materials research output, as judged by number of publications, has been doubling every 40 months. 
There is recognition that regardless of the precise physical form a material (e.g. nanoparticle, 2D layer, 
thin film, bulk ceramic, single crystal), it is the interfaces – the surfaces, the connections between 
grains, the internal boundaries between a structure and its point or extended defects – that conspire 
with the intrinsic (“bulk”) properties to determine materials behavior. This has led to the burgeoning 
field of 2D layered and interfacial materials (2DILM), the tailored creation and study of such interfaces. 
A cornucopia of new data science techniques, such as those popularized as artificial intelligence / 
machine learning (AI/ML), are succeeding in tackling problems once considered almost impossible – 
whether it is superiority over humans in games such as Chess or Go, or computer-driven object image 
recognition, or speech recognition and understanding of the written word. 
 
What new materials advances are possible through the convergence of the 2DILM and AI/ML fields? 
This report seeks to answer this question based on community input gathered in multiple stages, 
culminating in a pair of forums in January and March 2022. The community identified significant 
societal benefits from the convergence of materials with AI/ML, particularly in the ability to advance 
predictability of synthetic reactions and to enable preparation of materials not possible without 
automated control, leading to advancing materials research and fundamental knowledge, and 
scholarship, with applications to energy, health care, infrastructure and communications, 
manufacturing, and space technology and exploration (section I.2). Within the community, we have 
identified four areas in which immediate research and actions can lead to realization of these future 
visions. Specifically, we highlight focused efforts to: 

1. Predict Outcomes of Actual Synthesis Conditions, by 
a. Establishing a regular, critical assessment of phase diagram predictions vs experimental 

reality, analogous to the assessments in protein folding that culminated in AlphaFold.1 
b. Establishing the science to more rapidly produce experimental phase diagrams and 

include kinetics on an equal footing to thermodynamics within these diagrams. 
2. Achieve AI-assisted and Autonomous Synthesis, by 

a. Identification of specific materials discovery and synthesis problems where ML and AI 
can aid to inform human intelligence to accelerate synthesis research – e.g. to prepare 
compounds on the verge of instability (where phenomenal properties usually emerge). 

b. Developing the techniques for “AI and human in the loop” synthesis and processing. 
c. Setting the expectation of broad dissemination of such tooling across the nation. 
d. Encouraging development of methods to extract “how” and “why” AI/ML models reach 

the conclusions they do. 
3. Develop the Data Materials Science Workforce, by 

a. Convening practitioners and educators in a transdisciplinary way to lay out best 
practices and develop community resources enabling seamless incorporation of data.  

b. Encouraging hybrid team science across chemistry/physics/materials science/materials 
engineering/computer science. 

4. Enable Data Curation and Community Use, by 
a. Establishing the community expectation that the data supporting figures and tables of 

publications be shared publicly with an explicit license or usage policy. 
b. Encouraging development of the science behind effective and interoperable materials 

data models. 
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I. Introduction 
 

I.1. Landscape and Context 
 
"Data-intensive Scientific Discovery is a Fourth Paradigm for Science" – Jim Gray (quoted by Hey, 2007) 
 
Recent reviews have highlighted novel and unusual optical, electronic, magnetic, and mechanical 
properties of two-dimensional, interfacial, and layered materials (2DILM).2-9  Harnessing these 
properties is widely believed to hold promise for wide-ranging, transformative impacts for society by 
creating innovative technological opportunities and applications across sectors as diverse as energy 
generation and storage; healthcare and biomedicine development; cyberinfrastructure and national 
security; and environmental sustainability.7-17  This promise and the fundamental scientific challenges 
encompassed in understanding and creating 2DILM materials has driven international investment in 
research and research infrastructure to accelerate their realization including development of artificial 
intelligence and machine learning methods to leverage the burgeoning materials data landscape of 
the Materials Genome Initiative.18-27 The timing, scope, and future directions of such investment will 
be driven not only by the potential impact of 2DILM materials, but by the maturity of resources and 
community readiness needed to meet goals that require collective and coordinated 
initiatives/approaches.   
 
Acceleration of research through coordinated community pursuit of grand-scale challenges is a goal 
that spans scientific fields. Perhaps the most well-known exemplar of such community collaboration 
for strategic goals is the International Technology Roadmap for Semiconductors and its successor.28 
The hallmark of such efforts is the recognition of the community that the goals are too big to be 
accomplished by traditional research groups or collaborations; by sharing a common vision and clear 
waypoint goals along the path to that vision the community has created broad opportunity and high-
impact results that are synonymous with Moore’s Law and the scaling of processor advancement over 
decades.  The advent of the Materials Genome Initiative (MGI)25 in 2011 ushered in the beginning of 
broad recognition that materials research could sustain a similar period of accelerated advance, in this 

case by communal sharing and endorsement of data and 
data driven methods.   
 
The 2017 TMS report Building a Materials Data 
Infrastructure: Opening new Pathways to Discovery and 
Innovation in Science and Engineering29 highlights 
common challenges and provides a focused review of the 
importance of data in science and engineering. Their 
review speaks to aspects of the data lifecycle, success 
stories from other fields (notably geosciences and life 
sciences), and specific prior efforts from the materials 
community.  Important common challenges include a 
lack of data sharing incentives; incomplete or 
inappropriate data formats; intellectual property and 
data ownership restrictions; uncertainty about valuation 

Rapid Rise in Materials Research 

 
Materials research is rapidly doubling 
every 40 months. 
 



 

2 
 

of data lifecycles; and a lack of data-aware 
performance metrics.29-30  These 
challenges are ones we routinely hear 
from colleagues at data workshops and 
events when engaging more technical 
problems related to the diversity and 
enormous volume of materials research 
data. The 2021 revision of the MGI 
Strategic Plan,25 MGI 2.0, emphasizes the 
importance of community coordination to 
drive implementation of FAIR data 
principles and development of innovative 
materials data infrastructure.  The 
Materials Research Data Alliance 
(MaRDA), a major outcome of the 2019 
Summit of Big Data and 
Cyberinfrastructure in Materials Research 
co-organized by PARADIM and NanoHub, 
is an instantiation of just such a materials 
research community network which provides a framework to connect focused efforts.31 
  
The importance of advancing the materials data infrastructure arises from a revolution in our ability to 
capture, store, and process data with the transformative new ways science is proceeding by focusing 
on data. Leveraging terabytes, even petabytes of data is now routine in the business world and has 
sparked a revolution in data-driven science (sidebar).  The 2018 National Academies report Open 
Science by Design: Realizing a Vision for 21st Century Research19 affirms this importance and the 
integral need for open science and data across disciplines, as does a more recent 2022 National 
Academies report on Automated Research Workflows for Accelerated Discovery.33  NASA’s 2018 
report, Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and 
Systems34 also emphasizes the opportunity materials data provide to enable development of novel 
materials while realizing MGI goals to accelerate the pace of discovery and deployment of new 
materials.  Each of these reviews provide valuable information on current materials data infrastructure 
calling out gaps and challenges to be addressed.   
  
In addition to opportunity and need, timing is important.  The impetus to push ahead now is clear 
given the breadth of tools available to make open data practical as well as the strategic pressures of 
commitments already bearing fruit in Europe and Asia. In 2000, China launched two centralized 
materials databases involving 18 research institutes with data collected and entered in a standardized 

Materials Predictions Dominate 

 
The impact of the MGI on the prediction of new 
materials that improve or produce new functionality 
is profound. The above shows the high throughput 
materials predictions in energy materials from 2006 to 
2019, and the fraction that contain synthetic work, 
showing a rapid increase in predictions and that 
experimental validation of predictions is not keeping 
pace. How do we improve predictions and accelerate 
synthetic validation? Courtesy I. Dabo.32 
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format.26,35 Their 2016 Materials 
Genome Engineering Project35 has 
moved quickly with substantial 
government investment.  These and 
other efforts are paying dividends as 
they help transform China into a high-
tech power.35 The European Commission 
Joint Research Centre has organized over 
5000 datasets into the MatDB enabling 
system integration, data interoperability, 
and minting of digital object identifiers.36 
Organizations such as OpenAIRE and 
EUDAT provide support mechanisms and 
technical infrastructure for researchers 
to support data stewardship and open 
science.22,23 
 
2DILM research is at a crossroads created 
by the confluence of rapid advances in 
high-quality data production, broad 
availability of innovative 
cyberinfrastructure, a growing 
community focused on sharing data 
resources, the maturation of NSF’s first 
two Materials Innovation Platforms 
(MIPs), PARADIM and 2DCC providing 
synthesis of 2DILM materials and 
knowledge sharing of data and know-

how through development of infrastructure and a research ecosystem to drive advances in the field, 
the founding of the HDR institutes including the Institute for Data Driven Dynamical Design, the 
creation of the AI Institutes and AI Planning efforts including those for 4D Materials Science and AI-
enabled Materials Discovery, Design, and Synthesis, and the creation of the DOE Artificial Intelligence 
and Technology Office and the Artificial Intelligence Advancement Council.  The combination of these 
elements has set the stage for directed, rapid data-driven advances to accelerate discovery and 
deployment of high-value 2DILM materials, especially when combined with parallel advances in 
algorithms and methods to infer meaning from such data.  In addition to its own inherent value to 
technological development, a clear path for data-driven 2DILM research can provide a 
roadmap/exemplar for other areas of materials research, translational methods for next-generation 
manufacturing, and fundamental challenges for AI development with broad impact.  Materials 
research sits at the intersection of physics, chemistry, materials science, and engineering. Convergent 
opportunities to transform materials research arise from changes in these fields. Generational 
opportunities arise from changes across all these disciplines.  The rise of data-driven, AI/ML 
empowered methods and a community ready to embrace them puts materials research on the cusp of 
generational change. The potential impacts of data-rich 2DILM exist (section I.2).  The community is 
ready and has converged on a common vision and goals (section I.3). The structures to encourage 
synergies in this area are just now forming (section I.4). 

Protein Folding: From Impossible to Tractable 

 
The problem of predicting the structure of a protein 
from its sequence was a 50 year grand challenge.37 
After years of slow but steady improvements, the field 
was transformed from 2018 to 2022 with the 
introduction of AlphaFold, a structure prediction 
approach combining AI/ML techniques with domain 
specific knowledge and a large corpus of experimentally 
determined protein structures. It has demonstrated 
atomic level accuracy even in the absence of 
comparable structures in the training set,1 and took 
what was once considered an impossible task, and 
made it tractable. This was possible due to a confluence 
of available experimental data, a community driven 
biannual competition to fairly evaluate techniques 
(CASP - Critical Assessment of protein Structure 
Prediction), and the development of domain-specific 
AI/ML techniques. What similar advances are the 
2DILM community ready to tackle?  
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I.2. Motivation and Potential Societal Outcomes 
 

"We will not rest until the periodic table is exhausted," - Intel CEO Pat Gelsinger (2022) 
 
Ever since the creation of the first tools, the development of materials has gone hand-in-hand with 
improvements in communities and society. Indeed, advanced materials are so integral, diverse, and 
ubiquitous in the fabric of everyday life that their extreme performance and utility are often and 
paradoxically underappreciated and taken for granted. Yet almost every material advance has the 
potential to lead to improvements in society. 
 
Given this enormous scope, it is important to identify those domains in which advances in data-driven 
materials discovery for two dimensional, interfacial, and layered materials would be particularly 
impactful. Beyond the obvious deep connection to semiconductor devices alluded to by the quote 
above,10 the forum identified significant impacts in the following sectors: 
 

 Energy. Any device doing useful work requires power. 2D materials might enable a closed cycle 
photocatalytic hydrogen generation and fuel cell power source to replace or augment batteries 
in many devices. 

 Fundamental Knowledge and Scholarship. Access to instrumentation and expertise 
bottlenecks participation in science and engineering. A 2D materials virtual synthesis 
laboratory would democratize discovery, enabling more equitable access to state-of-the-art 
techniques and expertise, e.g. by empowering those with certain physical disabilities to carry 
out research that would have been impossible before. 

 Health Care. Treatment and prevention of disease is necessarily personalized, depending on 
each person’s genetic and environmental history. Atomically thin biocompatible materials with 
embedded functionality may allow for identification and elimination of cancer cells in vivo. 

 Infrastructure and Communications. The internet of things has popularized the opportunities 
brought by seamless integration of computing and networking with human activity. Extremely 
low power neuromorphic chips built of 2D materials enable this reality, operating without 
external power sources (much like one can build a radio that runs on the power of the radio 
waves38) and with on-device processing to minimize communication overhead. 

 Manufacturing. The semiconductor revolution was enabled by the ability to build intricate 
structures at the micron and nanometer scale. If the ability to controllably layer atomically thin 
2D materials is added, then bottom-up, precise, atomic-scale 3D manufacturing becomes a 
reality, enabling creation of not just new semiconductor platforms but also the creation of 
materials with superior combinations of thermal, electrical, and mechanical properties. 

 Space Technology and Exploration. Space, and neighboring planets, are harsh environments. 
Atomically-thin materials might enable the fabrication of large solar arrays or catalysts for food 
or energy production that can be rolled up and efficiently transported off world, with sufficient 
chemical durability to survive. 

 Transforming Materials Research. Knowing what to make and how to make it is hard. 
Combining AI techniques with aggregation of materials knowledge and automated materials 
synthesis platforms may enable automatic – or at least guided – generation of synthesis 
recipes for materials meeting user specifications. 
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These impacts were identified and framed in 
the context of “future headlines” that might 
result from investment in 2DILM research, 
and have associated specific steps that must 
be taken or challenges overcome to realize 
those impacts. 
 
A prominent aspect of the areas and 
mechanisms of impact identified is the 
commonality of underlying themes. The 
potential of 2D interfacial and layered 
materials to change the energy landscape – 
be it through replacements for lithium ion 
batteries, better energy conversion devices 
(catalysis) or cutting power consumption for 
useful tasks by orders of magnitude – is 
notable. The importance of advancing both 
synthesis and materials design – whether 
through virtual laboratories, new ways to put 
every atom in its place, or the aggregation of 
data across domains – is striking.  Multiple 
impacts also identified the importance of 
access – and in particular the democratization 
of access to all components of the materials 
pipeline.  
 
Considered as a whole, within materials research, a particularly compelling future headline was: “The 
Materials Cookbook: AI generates synthesis recipes for materials that meets user specifications,” The 
vision being that synthesis is often the key bottleneck in materials development, and that data-rich 
techniques could enable a level of control over general materials synthesis that has not previously 
existed [except, possibly, within the narrow domain of organic retrosynthesis]. Such developments 
could then couple to emerging efforts in 3D printing (“Intelligent Manufacturing: Worldwide 
"learning" 3D Printer Network”) and enable unprecedented crowdsourcing/engagement in the 
materials discovery process (“NSF virtual synthesis laboratory goes online”).  
 
Such commoditizing of materials synthesis and discovery would then also enable discoveries in nearby 
fields (e.g. “Axionic Dark Matter Detected!”), as well as enabling broad participation in developing 
materials to improve batteries, chemical transformations, and more. 
 

I.3. Community Readiness 
 

“Over the last decade, we’ve seen major advancements in using big data to predict new materials." - 
Eric Toberer, Director, HDR Institute for Data Driven Dynamical Design (2021) 
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Accelerating materials discovery requires building connections between communities. Arguably, the 
four key communities involved in this process are: (1) materials synthesis; (2) materials 
characterization; (3) materials simulation; and (4) data science. Connections between these 
communities are essential, given the increasing demand for new materials - and for dramatically 
decreasing the timeline between their initial discovery and for bringing these materials to the 
marketplace. The material synthesis/characterization and materials simulation communities have seen 
significantly increased integration levels through the Material Genome Initiative and associated 
endeavors - and advancements in experimentally accessible time/size resolution, together with 
improved algorithm development39-45 and increased computational facilities is now enabling almost 
side-by-size communication between experimental and modeling,46-47 leading to improved 
communication between these two communities. With these advancements of experimental and 
simulation capabilities, we now have the ability to generate unprecedented amounts of material 
synthesis and material simulation data, demanding a connection with the fourth - and arguably the 
most recently established - essential community, data science.30,48 Data science - and the development 
of associated Artificial Intelligence (AI)49-50 based tools like Machine Learning (ML)51-53 - thrives on big 
data, allowing its unbiased analysis, enabling us to find trends and use these to make predictions -  for 
example for material/property relations and material synthesizability. The data science community has 
now developed a series of well-developed ML tools that are already beginning to impact material 
synthesis.53-54 However, communication channels between data science and material synthesis and/or 
material simulation efforts are at a relatively immature stage - and broadening and deepening these 
channels is essential for reaching our future material discovery goals.  
 

I.4. Synergistic Readiness 
 

“A machine is not a genie, it does not work by magic... [t]o believe otherwise is either to believe in 
magic or to believe that the existence of man’s will is an illusion and that man’s actions are as 

mechanical as the machine’s.” – Arthur L. Samuel (1960) 
 
Materials research has 
always thrived by drawing 
upon the expertise and 
advances in many domains. 
In considering: “is now the 
right time to make large 
steps towards and 
investment in data-rich 
materials discovery,” the 
readiness of the 
neighboring communities 
required must also be 
considered.  
 
Driven in no small part by 
the relentless climb of 
computing power and resources, data science has seen a meteoric rise and expansion over the past 

AI/ML Frontiers/Questions 

 How do we detect, control, and minimize bias in AI/ML models? 

 How do we make AI/ML model outputs robust, especially in the 
face of adversarial inputs? 

 How do we encourage sharing of codes and data to enable 
reproducibility and transparency? 

 How do we extract underlying scientific principles and 
fundamental truths from AI/ML models? 

 How do we make AI/ML techniques work well in the presence of 
sparse, error rich, and biased data? 

Many current challenges and frontiers in fundamental AI/ML science 
and engineering, such as those above, are especially relevant for the 
application of AI/ML to 2DILM materials research, and there are 
ample opportunities to make advances in both simultaneously. 
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two decades.19,33,55-56 This has enabled the practical implementation of data analysis and learning 
techniques first developed (theoretically) more than sixty years ago,57-59 now popularized under the 
handle “AI/ML techniques”.60-62 Driven primarily by the computer science, computing, and 
mathematics communities, these techniques have rapidly solved challenges once considered to be 
intractable – such as identifying objects in images (“computer vision”), and comprehending the 
meaning of the written word (“natural language processing”).63-64  
 
The tools and techniques behind these accomplishments are reaching maturation, and there is great 
excitement in the computer science, computing, and mathematics communities about the potential 
for these to impact new problem domains. Indeed, there are multiple national and international 
efforts (e.g. the National AI initiative, the National AI Research Institutes, DARPA’s Explainable AI and 
AI Next Campaign, NISTs standards process for reliable and trustworthy AI, the Global Partnership on 
AI, etc.) to bring these tools to new challenges spanning the physical sciences and engineering.  
 
There are particular synergies in bringing this community specifically to materials discovery and 
2DILM. Compared to the examples mentioned above, data in materials is sparse, diverse, and error 
rich. At the same time, there are one hundred years of knowledge and models of how materials 
behave, making it a great playground for the development of new AI/ML techniques capable of 
handling such realities. Another strength of ML techniques is the ability to pull patterns out of data – 
and many of the impacts described above rely on this feature. Further, if an understanding of how and 
why an ML model reaches the conclusion it does can be developed (this is an open problem in data 
science, generally), then that understanding can be mapped to improved models of materials and 
materials discovery.  

 
The potential synergies go further. All fields of science, 
including basic AI/ML research, struggle in timely 
publication of data and codes underlying studies. Much 
foundational materials discovery is driven by the need to 
find a new class of materials with a specific property – be it 
superconductivity, high catalytic activity for water splitting, 
or a myriad of others. And there are many examples of 
successes in this regard. But the translation to useful 
technology is often hampered by the fact that it is not “one 
property” that matters – what matters is how it fits into the 
whole system driving the useful functionality. At a 
minimum, this means that multiple properties must be 
considered simultaneously (e.g. dopability and thermal 
conductivity and lattice matching to silicon), and in many 
cases means that the desired property is not an attribute of 
a single component or single material, but an emergent 
property of the collection of materials and components – 
ie, the system. This requirement to consider multiple 
factors simultaneously has recently been popularized as 

“co-design”,65-66 but is extremely difficult due to the long feedback loops and feedback times between 
how discoveries happen and how technologies are developed (For example, as noted in the 2014 
Materials genome initiative strategic plan, it currently takes 20 years to transfer materials innovation 

 
The juncture of materials science 
with engineering, technology, and 
computer science identified in this 
report has the potential to enable 
new synergies across fields and 
domains. 
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to semiconductor fabrication of new devices67). The inclusion of AI/ML techniques, even as coarse 
screens in a high dimensional multi-property landscape, has the potential to greatly reduce the 
latency of such a feedback loop and accelerate the rate at which discoveries and technologies are 
iterated. 
 

I.5. Downselecting from broad topics to the threads 
 

“Deciding What Not To Do Is As Important As Deciding What To Do.” – Former Apple CEO Steve Jobs  
 
Community identification of the fundamental vision and associated goals that will drive the next 
decade and more of 2DILM research has been in progress for several years.5,8,10 The 2DILM forums on 
Envisioning Pathways to Accelerated Materials Discovery in January and March 2022 centered on 
leveraging exploratory phases of idea conception and community growth. The forums themselves 
focused on winnowing and connecting community-wide experience by identifying driving questions, 
gaps, and central challenges to reveal a focused, shared mission.  An important component was 
learning from efforts already in this area. For example, in Fall 2017, an NSF-supported meeting of 
grantees associated with the Emerging Frontiers in Research and Innovation in 2D Atomic-Layer 
Research (EFRI 2-DARE), Designing Materials to Revolutionize and Engineer our Future (DMREF), and 
Materials Innovation Platforms (MIP) advanced communal research concepts centering on leveraging 
data resources in the 2D materials community.18 This community effort led to supplemental funding of 
nearly 40 PIs and 25 universities and the start of broad understanding of the need for coordinated 
work centered on optimizing data to fuel burgeoning techniques. 
 
A 2020 NSF Request for Information (RFI) aggregated PI experiences from the 15 supplements 
spanning experimental, computational, and data-driven approaches across the processing-structure-
properties spectrum of 2DLIM research. Collectively, respondents reported on:  Computational efforts 
including improved tools to predict structure and electronic/optical/magnetic properties and interpret 
and process experimental data; Experimental efforts including generation of material sample libraries 
and validation/guidance of computational efforts; and data archiving and machine learning activities 
including screening of candidate materials and guided materials processing.  The activities funded by 
these supplements provided experience with close coupling of experimental and computational teams 
to create outcomes beyond the parent EFRI, DMREF, MIP, and PREM activities. RFI responses 
emphasize perspectives on maximizing student training in data-science knowledge and skills; barriers 
to carrying out data-intensive research; characteristics of successful 2D data infrastructure; and 
activities to promote continued development of 2D data infrastructure. Recurring themes in the 
responses highlight the need for sustained motivation and investment in: 
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 infrastructure to curate physical samples 

 incentives for curation of experimental and computational data 

 closing critical gaps in functional metadata through use cases, reference datasets, and in 
coordination with major materials data repositories  

 connecting and collaborating from data creation through data use and reuse to bridge 
disparities in experimental and computational data and clarify metadata development 

 broadening community input to shared data resources and repositories 

 interoperability between the large and growing number of data resources at universities, 
national laboratories, and in industry 

 fundamental advances in AI/ML that incorporates fundamental physics to meet the challenges 
of small or specialized datasets and yield statistically significant results in materials science 

 diverse workforce development and cultural change including broad adoption of advances in 
training and research methods/workflows 

These themes are not unique, of course, to 2DILM research, but can provide important benefit to the 
wider materials research community in both substance and as an exemplar of methods and best 
practices. This constellation of funded projects and facilities that kickstarted data-intensive work also 

 
Preliminary dendrogram (left) and heatmap (right) visualizations of questions provided by forum 
applicants used for sorting and to guide organization of working groups at the January forum. Note 
that the initial sorting identified 10 groupings as shown in the color coding of the dendrogram. 
Refinement of these groups by the core organizing team combined smaller groups to create the 
six, central themes of the forum. 
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created a shared understanding of critical gaps and prepared a foundation to build readiness to lead in 
a sustained community effort to close them.  

To capitalize on this foundation, the PARADIM and 2DCC MIPs invited 490 researchers from the 
broader 2DILM community to apply to participate in the January 2022 forum, for which ~96 responses 
were received.  The scope of this community included researchers with active or past awards in 2DILM 
research; prior 2DCC and PARADIM users and summer school/workshop participants; and data 
science/AI experts with collaborations or other ties to materials research. As defined, this community 
ranged from early-to-senior career stages; positions in national laboratories, industry, and academia 
(R1, non-R1, MSI); and deriving research support from the NSF, DOE, DOD, and non-profit foundations. 
The application process was used to help select a diverse cross section of the community as well as to 
identify the scope and core challenges of interest across the community.  The applicant questionnaire 
specifically elicited views of the most interesting questions that might be addressed in 2DILM 
materials in the next 10-15 years.  
 
Responses to the applicant questionnaire generated 168 questions/challenges (Table C1) which the 
core team refined to 90 based on topical scope and uniqueness. These 90 questions were sorted using 
dendrogram, tree map and heatmap visualizations (above) to assist review and refinement by the core 
team and steering committee. This process identified six groupings of the community-created 
questions and provided a basis for working groups at the forum. Importantly, all questions were used 
whether the author was selected for participation in the forum and the team refrained from naming 
or evaluating the groupings beyond that done in the information provided by applicants and thereby 
avoiding biasing community discussions during forum working groups.  The identified groups covered 
(Table C3): 

 Teaching, training, and trusting data science for materials discovery 

 Democratization of data, data tools access, and archiving  

 Interconnection between data and knowledge 

 AI-enabled digital twins created through unification of experimental and theoretical data 

 Establishment of autonomous inorganic synthesis science with secure synthesis and discovery 

 Translation of materials and data from discovery to technology and industry 
 
While not named as such, these themes revealed concern and interest in the widely recognized, 
foundational challenges found in most visions of data- and AI-driven futures in science and 
engineering.  These themes are also aligned with those reported in the 2020 RFI and serve to highlight 
the breadth of community consensus and persistent nature of these foci.  Specifically, the identified 
themes provided focus on: issues of understanding and implementing FAIR data principles; the 
opportunities and value of leveraging shared data resources; development of materials-specific 
applications and extensions of AI; automation and high-throughput approaches to accelerate the 
translation of data to knowledge to industrial applications; creating and delivering sustained 
workforce development across all age, experience, and privilege sectors; and the broader impacts of 
the work within and beyond the 2DILM domain. Over the second half of the January forum, 
participants worked in small groups to find conceptual connections and create four focused, high-
priority challenges encompassing the central themes of the springboard questions as well as new 
questions that arose during discussions. These community-scale challenges encompass innovation and 
novelty that is critical to meeting the community’s shared future vision.   
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Specifically, how might we (Table C5): 

 Better predict outcomes from actual synthesis conditions? 

 Achieve AI-assisted and autonomous synthesis? 

 Promote knowledge sharing? 

 Prepare practitioners to better use data to accelerate discovery? 
 
In March, a second forum convened a focused group of participants with expertise to dissect these 
challenges and set specific goals to create a roadmap.  While specific, these are goals and not 
solutions.  Each goal will require community-scale work that benefits from coordinated, but diverse 
approaches.  This process of engaging, winnowing, and refining the community’s views has created 
the elements of a roadmap.  This roadmap has a shared destination, agreed upon challenges, and 
specific goals to act as milestones that define the path; it does not profess clairvoyance to specify how 
to implement roadmap. 
 

II. Priority Research Opportunities 
 

II.1. Predict Outcomes of Actual Synthesis Conditions 
 

“How might we use data to guide and predict materials synthesis?” – Forum Participant 
 

II.1.1. Background 
 
Synthesis is often the rate limiting step of materials discovery.  Phase diagrams provide a road map for 
synthesis efforts by describing the range of conditions within which a desired compound is 
thermodynamically stable.  Incorrect phase diagrams pollute and inhibit new materials discovery; 
there is a need for internally consistent free energy data.  Most large-scale first principles databases 
(AFLOW,68 OQMD,69 Materials Project70) provide only phase diagrams (convex hull) at T=0 K with no 
strain. This is a mismatch with the needs for the community which performs experiments at high 
temperature and typically in the presence of interfaces.  Also, there are numerous experimental 
techniques – including Molecular Beam Epitaxy, Chemical Vapor Deposition, Atomic Layer Deposition, 
for vacuum-based techniques and other methods in liquid environments – which each present 
different challenges and environments. Accurate free energies—at the temperatures and other 
thermodynamic conditions at which synthesis is performed—are needed.  From the free energies, 
synthesis and processing conditions providing thermodynamic stability can be mapped out, phase 
diagrams can be calculated, reactions at interfaces or with crucibles or containers can be assessed.  
Unfortunately, critically assessed and internally consistent experimental free energies exist for only a 
limited number of inorganic materials (the approximately 4,300 entries in the SGSUB database71) exist.  
This number pales in comparison to the number of phases that are known, e.g., the over 250,000 
crystal structures in the ICSD database.72 In addition, there is limited information on kinetic processes 
such as diffusion and reaction which are needed to describe non-equilibrium conditions. 
 
Part of the substantial complexity arises from the sheer variety and number of different techniques 
available for the synthesis of materials, that together span vast ranges of thermodynamic and kinetic 
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parameter space – and often with only indirect control over relevant thermodynamic parameters. 
Numerous books and reviews on this plethora of experimental approaches – and current theoretical 
models used to simulate them – exist.73-81 What this means in practice is that even with 250,000 
crystal structures in ICSD, the amount of available experimental data is extremely limited and sparse 
compared to the size of the parameter space. 
 
On top of these general issues related to predicting material synthesis, specific additional challenges 
exist for 2D-materials. Phase diagrams to guide synthesis of complex oxide, nitride, carbide and 
chalcogenide materials are often less developed that for alloys and the calculations are more complex 
because of constraints of several sublattices and ionic substitutions.  Many such materials are made by 
relatively low temperature precursor routes, for which the interplay of thermodynamics and kinetics is 
important.  2D and layered materials often are stabilized or even made possible by the simultaneous 
existence of both order and disorder - ordered structural domains separated by cation disordered 
regions. Structure, thermodynamics, and synthesis may then be very temperature and precursor 
dependent.  Synthesis often follows an energy landscape of intermediates of increasing stability. These 
can be treated both in terms of thermodynamic pathways and kinetic constraints. An additional 
challenge for theory – in particular Quantum Mechanics (QM) based methods - includes the large unit 
cells and complex compositions of layered and 2D materials. The complexity of these materials 
essentially necessitates theory tools that can scale up – both size and time-scale wise – from QM-
based methods, for example pseudo-ab initio methods like Tight-Binding DFT82-83 or physics based or 
machine-learning based interatomic potentials (IPs).84-89 
 
Traditional phase diagrams also do not consider defect structures – including vacancies, grain 
boundaries and surfaces, which can play key roles in material synthesis as either intermediate phases 
or even as kinetically stable end structures. Fortunately, theory methods at various scales, including 
quantum mechanics-based methods and IPs, exist  at the atomistic scale and phase field90 and finite-
element91 based methods on the meso- to macroscale, have now reached a level of maturity and 
accuracy that they can, in principle, provide reaction barriers for material growth and defect structure 
energies and migration barriers. Communication across the time- scales covered by these theory 
methods is still not trivial, but the dramatic improvement of experimental size- and time resolution 
combined with the ever-increasing size- and timescales accessible by theory methods44,92 continues to 
decrease the gap between theory and experiment, thus allowing more direct validation of theory 
predictions and more direct testing of theory improvements. Machine learning (ML) methods can play 
a key role in further closing this theory/experiment gap – for example by analyzing experimental data 
for grain boundary movement and vacancy clustering and their relation to temperature and gas-phase 
composition- thus providing clear targets for theory validation. Furthermore, with theory methods 
expanding to ever-larger systems (>> 1,000,000 atoms for IPs) human-based analysis of IP based 
molecular dynamics trajectories becomes virtually impossible; here advanced pattern-recognition ML 
tools93-94 can be essential to harvest key observables.  
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II.1.2. Opportunities 
 
Reliable phase diagrams and expanded kinetic 
data will accelerate materials discovery. Text 
mining and collection of phase stability data from 
the literature in concert with an automated 
method of critically assessing this data by using it 
in combination with the entries of a starting 
database (e.g., SGSUB) and experimental or 
theory based phase stability data to build a larger 
critically assessed database of free energies is 
essential to making progress. A community 
driven, periodic, critical and impartial assessment 
of phase diagram predictions has the potential to 
lead to transformative improvements in quality, as 
has happened over the past decade in the 
challenge problem of protein folding. Similar 
fusions of reproducible, curated experimental 
data with unbiased and critical assessments of 
predictive tools are anticipated to be useful in 
advancing our ability to make successful structure 
predictions – for a given set of chemical formulas, 
what structures exist? 
 

II.1.3. Needed Research 
 
Systematic creation of new experimental phase 
diagrams for immediate use in guiding synthesis 
and for critically evaluating theoretical model 
performance is essential. This cannot be the job 
of a single institution, but must be driven by a 
community of practitioners. Improving theoretical 
tools to obtain chemical accuracy in calculated 
phase diagrams – as assessed by impartial, 
periodic, community-driven measurements, is 
critical. As with the recent advances 
demonstrated by AlphaFold in protein structure 
prediction, it is the fusion of these components – 
with new advances in how to incorporate the 
extensive body of existing domain specific 
knowledge with AI/ML training techniques to 
improve prediction accuracy. The materials 
community should strive to develop a similar 
impartial evaluation of the many theoretical tools 
that have been developed, are currently in 
development, and will be developed in the future. 

Phase Diagrams: An Opportunity? 

 
As a representation of the stable species as a 
function of thermodynamic parameters, phase 
diagrams are indispensable both for designing 
reactions to make desired materials, and to 
put boundary conditions on what compounds 
are possible to produce. Experimentally 
tabulated95-96 diagrams are essential in 
designing reactions for materials synthesis and 
discovery, but do not exist for some binary, 
most ternary, and virtually all quaternary or 
higher combinations of elements. The 
fundamental principles are known, and 
computationally predicted70,97-98 phase 
diagrams of multinary mixtures can be 
produced on demand, but are often found to 
lack the necessary precision to be useful in a 
practical synthetic sense. A regular, 
community-driven, impartial and critical 
assessment of phase diagram prediction has 
the potential to produce transformational 
improvements in predictive power and 
acceleration of materials synthesis. This 
requires significant and sustained investment 
in the creation of reproducible and curated 
phase diagrams, community consensus on 
impartial assessment metrics and approaches, 
and the sharing of data, tools, and techniques. 
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Equally important is to develop the conceptual formalisms and frameworks by which to include 
reaction kinetics on an equal footing to thermodynamic variables in the prediction of reaction 
products and reaction pathways. This must be tightly coupled to experimental data probing such 
kinetics, in a way that is transparent, reproducible, and useable by the entire community. This includes 
the development of approaches to study reaction dynamics in situ, and to identify which variables are 
important in dictating reaction outcomes. Given there must exist a mapping between synthetic 
conditions and the result, the development of AI/ML techniques leveraging such emerging database 
to make such reactivity predictions is invaluable. The scientific impact would be further enhanced if 
the guiding principles / fundamental truths of the universe picked up by accurate AI/ML models can 
be extracted from them (this being a grand challenge in the AI/ML space more generally). 
 
To truly realize predictive synthesis, it is also necessary to be able to determine the structures that will 
exist – or might exist if approached via the right reaction pathway. As with phase diagrams and the 
inclusion of kinetics, it is our view that having transparent and reproducible data, combined with 
sustained efforts in critically evaluating model predictions by comparison to high quality experimental 
results, is key. 
 
In addition, we need to develop new publication and credit mechanisms associated with phase 
diagram generation – either from experiment or from theory. Given the substantial effort involved in 
evaluating a complete phase diagram – especially for multicomponent materials, we need to identify 
mechanisms that allow for the addition of partial phase diagram data to existing databases and 
develop better tools for data sharing – both for positive results (e.g. theory/experiment match) or 
negative results – since both these results may be scientifically equally valid and as such are equally 
valuable from a data science perspective. This also includes making sure appropriate recognition and 
credit goes to those who invest the time and resources to do so. Here, the approach taken by the 
protein folding community – encouraging experimental determination of new structures to provide 
unbiased, critical tests of predictive tools, as part of a regular whole-community critical assessment, is 
one pathway to explore.  
 

II.2 Achieve AI-assisted and autonomous synthesis 
 

“How might we discover metastable and transient materials and states with remarkable properties 
that we don’t even know about, nor find in databases?” – Forum Participant 

 

II.2.1. Background 
 
Synthesis is notorious for its irreproducibility. Changes in the personnel performing the work, the 
synthesis chamber used, or the location of the synthesis often yields distinct results. This extends to 
scaled manufacturing, where reproducibility is only obtained due to extremely tight controls on all 
aspects of the materials production pipeline and the investment of significant resources to optimize 
the synthesis process for the given location, tools, suppliers, etc., though even there seemingly 
inconsequential variations can cause catastrophic disruptions.99  This is particularly detrimental to 
progress in materials research, as follow up work on promising findings is often bottlenecked on the 
ability to obtain reproducible specimens. Or, put another way, the general lack of reproducibility in 
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synthesis without significant per-individual and per-location investment in parameter changes and 
tuning, limits the rate of technologically useful materials discovery. 
 
At the same time, the last twenty years have seen significant advances in in-situ characterization and 
synthesis tooling, and in digital control and partial automation of process variables with in situ 
feedback. In many respects, then, the pieces are ready to use AI/ML to advance synthesis and 
synthesis science. What is missing is the “glue,” the methods to close the data-to-growth loop within 
the tool, matching timescales of growth and modeling plus computation/ML to interpret and act upon 
the data in real time. This also sets the stage for a transistor-like explosion in available materials 
synthesis data, as it lowers the cost per reproducible experiment (much like the computing industry 
lowers cost per bit/transistor). 
 

II.2.2. Opportunities 
 
There are many parameters that enter into synthesis, from the provenance and chemical details of 
reagents and their processing and use, to the nominal versus actual thermodynamic and kinetics 
conditions of growth, and their variability with time and space. It is the combination of this large 
number of known parameters (plus unknown ones) combined with a lack of knowledge of which are 
most important and how to control them with sufficient precision that leads to the irreproducibility. 
Translated into the language of data science, this means that synthesis operates in a highly 
multidimensional space in which the mapping between inputs and outputs is non-obvious, and in 
which even the best in situ measurements generally do not directly map onto a single or small number 
of process control variables. Determining such mappings (both between inputs and outputs, and 
between in situ measurements and outputs) is exactly the type of problem at which AI/ML techniques 
excel! And, if combined with advances in understanding how ML models are reaching predictions (see 
I.4), also open up the ability to use these models to reach a chemical understanding of what variables 
are important and why. 
 
There is thus substantial opportunity in accomplishing the merger of AI/ML techniques and synthesis 
in an automated (or semi-automated) way. The development of autonomous synthesis would 
accelerate materials research by orders of magnitude, similar to the impact of the steam engine on 
factories or the effect of computers on mathematics. Research will be more dynamic as robotic and 
AI-based processing can facilitate quick changes in direction. Continuity and reproducibility will be 
dramatically increased as protocols and approaches for materials synthesis and characterization will 
be institutionalized rather than residing with specific individuals within an organization. Finally, 
students and researchers will be freed from menial and potentially hazardous tasks enabling them to 
focus their synthesis talent on the crux of the synthesis bottleneck. Open access to autonomous 
synthesis tools via national facilities will increase the number of researchers who can contribute to 
advancements and engage citizen scientists. All of the above may sound too good to be true – but the 
events of the COVID-19 pandemic provide a window into what is possible. National user facilities with 
robust automation and remote access mechanisms in place (e.g. NSLS II, the Advanced Photon Source, 
PARADIM, etc.), saw greater sustained productivity than those without such access mechanisms (e.g. 
NIST NanoFab). Similar anecdotal stories exist for work within individual laboratories.  
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II.2.3. Needed Research 
 
Historically, the costs associated with equipment, 
sensors, computing hardware and software, and 
engineering effort to automate processes has limited 
investment in automation to production lines and other 
situations in which a limited number of well-defined 
products are synthesized in large volumes. In contrast, 
materials discovery relies on accessing new regions of 
parameter space, and many impactful discoveries are the 
result of serendipity (i.e. something changing in a 
fortuitous way and someone noticing the change). AI/ML 
guided discovery thus requires the 
redesigning/engineering of synthesis and 
characterization tooling to enable human/digital/robotic 
interaction while retaining the flexibility to access (and, 
importantly, know you have accessed) new or tailored 
synthetic conditions. Further, it is crucial that the time 
scale of the in situ real-time feedback from AI algorithms 
be on the same time scale as the synthesis task.102 While 
fully autonomous AI-based materials discovery likely 
requires yet-to-be-made advances in data/computer 
science (see section I.4), success with the more tractable 
(but still hard) task of harnessing AI and ML to capture 
the actual conditions of fortuitous reactions and enable 
their reproducibility is a natural steppingstone. 
 
Achieving AI-assisted and autonomous synthesis can be 
enabled through: 

 Development of protocols and procedures for 
automatic centralized gathering of data from existing synthesis and characterization tools into 
integrated databases with metadata and formats that are amenable to ML and other data 
science techniques (see community opportunity III.2), as is being done in some limited cases 
already (e.g. BlueSky from NSLS-II, NIST’s NexusLIMS). 

 Identification of specific materials discovery problems and synthesis processes where ML and 
AI can aid to inform human intelligence to accelerate synthesis research – i.e. identify specific 
“challenge” problems on which to develop the techniques. 

 Collaboration between vendors and researchers to design plug-and-play equipment to enable 
synthesis and characterization tools that exchange physical samples as well as data with 
minimal human intervention, and lower the cost to that of existing synthesis equipment today. 

 Further development of in situ characterization tools that provide rapid feedback on material 
properties – this means not just providing the data, but having the data and analysis 
sufficiently integrated and automated to extract meaningful, actionable information – i.e. what 
does the data mean should be tweaked?  

 Development of knowledge extraction approaches that illuminate “why” ML models are 
making the predictions/decisions they are, so we are learning “why” and not just “how to” 

ML Discovery of New Reactivity 

 
Granda, et al. reported in 2018 the use 
of an ML guided organic synthesis 
robot to discover four new chemical 
transformations.100 This achievement 
was enabled by combining robotic 
synthesis with domain appropriate in 
situ characterization and a novel twist 
on ML to enable predictive accuracy 
with relatively few input data (by 
leveraging known retrosynthetic tools), 
and has spawned whole new directions 
in organic synthesis research.101 
Robotic synthesis tools have begun to 
be developed in the 2DILM space, and 
in situ characterization approaches are 
rapidly developing. Does sufficient 
domain specific knowledge of materials 
synthesis exist to enable a similar 
watershed achievement in 2DILM? 
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A combination of steps across multiple timescales and lengthscales is needed to meet these needs. A 
central theme among these is the need to collaborate closely with tool designers and vendors to 
provide the capabilities needed, but to do so in a way that ensures open access to data and APIs. 
Here, lessons from aligned fields that have already largely made this leap are useful. For example, 
automated protein and DNA synthesis machines exist because the modular chemistry enabling them 
was developed, and it was recognized by the individuals (and their institutions) that selling such tools 
not only made economic sense, but would enable a much larger community to adopt the techniques 
than would otherwise have been possible. Following much the same flow, automated stacking robots 
exist in the laboratory and are being commercialized and will lead to radical improvements in both 
reproducibility and accessibility of tailored 2D heterostructures. Older examples also exist – e.g. from 
laboratory to commercial optical floating zone furnaces. Two ingredients appear key: (i) that there be 
a market for the tools, and (ii) that the incentives be aligned with broad dissemination of the 
technology rather than reserving as a competitive advantage. 
 
The size of the market is more or less set by the generality of the tool (more general = larger market) 
and the willingness of stakeholders (across academia, government, and industry) to support 
acquisition of tooling. Alignment of incentives comes from the gain from decentralization being larger 
than that from holding onto the technology. Addressing both of these requires hard conversations 
amongst all stakeholders, and hard decisions on directions in which to focus effort and resources, with 
preference given to those that are simultaneously unique and generalizable. For example, we believe 
that vendors who do not provide easy and open mechanisms to workflow data in open and known 
formats should not be selected for new equipment designs and installations. Further, there should be 
an expectation of broad dissemination go hand in hand with resources enabling the development of 
automated synthesis tooling. 

 

III. Community Opportunities 
 

III.1 Develop the Data Materials Science Workforce 
 

“How might we better train students/scientists to do new science in the context of all the large data 
processing tools and techniques?” – Forum Participant 

 

III.1.1. Background 
 
Training beyond the high school level is traditionally closely tied to specific areas/fields of study – be it 
economics, chemistry, or materials science. This specialization is important to have a suitably deep 
body of knowledge on which to draw in a career. It does, however, result in a natural barrier to the 
incorporation of new and important areas of knowledge in existing curricula as the new area is often 
viewed as augmentative to, rather than a core part of, the discipline.  Even in cases where the gain is 
obvious – see for example the permeation of computers into nearly every area over the last 50 years – 
residual vestiges of this barrier persist, e.g. many chemistry departments do not require any 
computer/computing training at all and instead expect the knowledge to be gained independently or 
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by osmosis. The priority research opportunities described in this document require a materials science 
and engineering and computer science workforce that share a common language in order to execute 
on these opportunities and turn them into real impacts. It is thus imperative that methods and 
approaches towards growing a data materials science workforce will be developed. 
 
One perceived challenge is that all of these fields are very rapidly evolving. As such, what is most 
important then in the workforce is adaptability and ability to keep up with advances. This is not a 
unique problem for materials, and really requires that the training provide grounding strong 
foundation in the things that don’t change (the fundamentals) – be it models of computing or the laws 
of physics. 
 

III.1.2. Opportunities 
 
As a naturally interdisciplinary field, materials science and engineering enjoys lower barriers than 
many to the incorporation of advances from related fields. This extends to education and related 
approaches to prepare a data materials science workforce (see, e.g., the European Union EDISON 
project103). Further, there is presently significant demand within the diverse student bodies of 
chemistry, physics, and materials science for data science training. Additionally, the challenge of 
finding, recruiting, and retaining materials scientists with data science capability has been well noted 
as a key limiter of process in various industries. As such, there is demand on all sides, and thus 
opportunity to be successful. 
 
Equally important to individual education are the benefits that come from communal agreements on 
how to frame materials science and data science problems. Standardization of data, metadata, and 
interfaces will spur innovations in equipment design allowing their wider adoption. Platforms that 
provide access to data, tools and computational resources will lower the barriers to their use by 
practitioners. Improved educational frameworks will increase the knowledge transfer from basic 
science and engineering innovations to practice. A diverse cadre of next generation material scientists 
and practitioners will be developed who are able to leverage the power and potential of data and AI to 
accelerate science. Since innovations in materials are core to technological advances in many areas of 
national and societal priority, accelerating material discovery will positively impact virtually all areas of 
human endeavor. 
 

III.1.3. Needed Community Actions 
 
Achieving these goals will require the development of new education and training opportunities and 
standardization of data/metadata and interfaces so they can be combined to form reusable shareable 
workflows. Material scientist and engineers must be trained and encouraged to communicate with 
data scientists (and vice versa) to collaborate effectively to address previously unsolved material 
science problems. This includes not just at a technical level, but at a “human” level – i.e. 
communication, collaboration, and teaming skills. Platforms for collaboration must be created that 
include data sets, analysis tools and computational resources along with the development of 
benchmarks and challenge problems to focus community efforts. Curricula and training materials must 
be developed for different audiences (faculty, users, developers...) and skill levels. Best practices 
should be shared regarding running, deployment, and sustainability of cyber-physical infrastructures 
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for education and research. Broader engagement with the AI/data science/cyberinfrastructure 
communities will be required along with engagement with other communities that have successfully 
integrated data science within a domain (e.g. astronomy, genomics, etc.).   
 
Steps the 2DILM community can take to make progress on this front: 

 Hybrid team science should be encouraged whereby data scientists and material design 
engineers are embedded with materials synthesis and characterization scientists in research. 
This should be a long-term engagement – where the data scientist and the material scientist 
are expected to develop a common understanding. It has to be clear that this common 
understanding is the main goal – and that a material discovery target is desired, but secondary. 
We want to clearly understand what steps were required for these communities to develop a 
synergistic understanding – this does not necessarily mean that the data scientist becomes a 
material expert – or vice versa – but that they have enough common understanding to benefit 
from each other’s expertise – creating a team that is more than the sum of its parts. 

 Based on successes and challenges in team science, identify the training needs of various 
communities (graduate students, faculty, ML tool developers, etc.), and develop sample 
curricula for different training needs.  

 Identify and develop a range of training delivery mechanisms – online training, short courses, 
summer institutes, badges, certificates, minor degree programs, etc. 

 Identify opportunities to integrate data science into materials curricula so that it is 
indistinguishable from the core discipline. 

 Build transdisciplinary efforts. The workforce should represent a new area that spans 
Chemistry, Physics, Materials Science, and Engineering disciplines. These labels should perhaps 
even disappear -- individual researchers bring diverse skills and expertise should not be 
“pidgeon-holed” or “siloed” into identifying with one or a couple of these (limited) areas. 

 

III.2 Enable Data Curation and Community Use  
 

“How might we move from the typical scientific publishing paradigm of papers data available on 
reasonable request to a truly transparent way of sharing scientific data?” – Forum Participant 

 

III.2.1. Background 
 
A defining issue in accelerating materials discovery and deployment is functional exchange of data to 
fuel critically enabling, data-driven approaches including AI/ML. Data, including experimental and 
computational results; codes and algorithms; and the trained ML models themselves underpins 
modern science and catalyzes deeper collaboration. Durable availability of meaningfully annotated 
data extends the value of data beyond the questions that data was collected to answer.  Appropriately 
curated and stewarded data increases the value of data over time to create lasting impact and the 
power to address large-scale challenges required to meet the goals of the 2DILM roadmap.   
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Indeed, in all fields data is now seen as one of, 
if not the most valuable resources in the world 
today109-111 specifically because it enables 
transformative leaps in understanding and 
predicting behaviors in complex systems.  The 
ability to reuse data to address a multitude of 
questions hinges, however, on sharing data 
with high levels of interoperability and deep 
levels of semantic understanding. Such shared 
reuse is central to optimizing the value of data 
that are expensive or difficult to obtain; it is 
central to optimizing the use of shared 
resources that create the most critical data 
such as beamlines and cutting-edge 
instrumentation; it is central to reuse of data 
to provide reproducibility and transparency 
critical to advancing the field.  Meaningful, 
shared reuse of data is central, therefore, to 
leveraging existing and future investments in 
instrumentation, facilities, training, and 
researcher effort. As such, investment in data 
infrastructure and systems is a priority output 
of this forum. 
 
Data curation, and enabling its use by a larger 
group, is also seen as a foundational priority 
for partnerships that accelerate translation of 
research knowledge and insight from lab to 

market and society. It is clear that in the science and in the translation, data itself is becoming a 
primary research output and central component of knowledge sharing.  In the materials domain this 
importance is an interagency priority called out in the MGI 2.0 strategic plan and recognized across all 
subfields.34,104,112-115 Functional data policy, infrastructure, and culture is at the heart of the FAIR 
principles for findable, accessible, interoperable, and reusable data and why FAIR data is the key 
conduit to knowledge discovery and innovation.116-119 A recurring theme in the 2DILM forums was the 
challenge of defining and implementing FAIR principles in the materials domain. While the concepts 
are simple the challenges of implementation, both technical and cultural, are not. Indeed, since the 
codification of FAIR principles in 2016, a multitude of science-driven initiatives in the materials domain 
has sought to build infrastructure 
 

III.2.2. Opportunities 
 
Two main conclusions emerged during forum discussions.  First, there is broad recognition of the need 
for sustained, community work to establish and evolve metadata models and standards that allow 
FAIR implementations and associated infrastructure development.  There were many suggestions of 
where such standards could arise including as dictates from publishers, funders, central standards 
organizations such ISO, or standard services providers such as NIST.  Push-back made it clear that 

The Power of Shared Data 
Shared data through the FAIR data principles is of-
ten noted for the potential to transform the scien-
tific endeavor.104-105 Shared data is now the basis 
for screen potential candidates for many kinds of 
properties and behaviors.106 Recently, Beck et 
al.107 showed the value of reusing data computed 
by DFT to extend high-throughput screening of 
catalysts with ML to learn the most important sur-
face features of catalysts, with less mean error 
than individual DFT calculations themselves.  

Shared data also plays a central role in 
trustworthy and open science. A bittersweet 
example comes in the form of a recent paper 
retraction prompted by data curation done after 
publication rather than during the process of 
analysis and review prior to release of results.108 
In the retraction, the authors revealed “When 
preparing the underlying data for public release, it 
was discovered that some data had been 
inappropriately deleted or cropped when 
preparing the final published figures…”.  This 
example highlights both the need for open best-
practices for materials data and the community 
challenge of potential impacts on scientific 
reputation.   
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centralized dictates of metadata rarely 
work and are unlikely to encapsulate the 
ever-evolving needs of a dynamic, global 
research community. Discussions around 
these competing perspectives make it 
clear that the path forward needs to 
prioritize metadata development as a 
community effort with sustained 
leadership that connects expertise and 
stakeholders across the data landscape 
from data producers to its many 
potential users as well as throughout the 
data lifecycle120 to produce practical 
solutions and lower barriers to 
participation or compliance.  The second 
main conclusion was that incentivization 
to create and use data FAIR will be 
complex but is central to success. 
Current state-of-the-art for 
incentivization focuses on reward 
systems and compliance enforcement. 
Reward systems include access to 
funding opportunities and development 
of data citation metrics to reflect the 
impact of data releases. Compliance 
mostly consists of requiring of data 
management plans (DMPs) and 
withholding or loss of funding for failing 
to meet unclear metrics or measures of 
FAIR.  This is despite the broader data 
community’s repudiation of FAIR metrics 
as useful.121 In overview, forum 
discussions highlight that this rather 
traditional view of incentives comprising carrots and sticks remains a central problem, perhaps the 
central problem in FAIR gaining traction in materials science.  Resistance to FAIR reflects that and 
centers mainly on the cost of broad implementation of FAIR and a cultural resistance to sharing one’s 
data. Investigators and funding agencies both have resistance to taking on the cost of FAIR and 
concerns about how it cuts into their other priorities or number of projects that can be undertaken.  
Common materials investigator culture has viewed data a private domain where sharing is undesirable 
because of opportunities for inappropriate use, inadequate compensation, or simply loss of 
competitive advantage gained by having proprietary access to data. Development of controlled access 
tools and mechanisms which support embargoed, non-public collaboration are essential to opening 
the spigot on this untapped latent data resource as a first step towards greater data transparency. 
 
 

The Materials Research Data Alliance (MaRDA) 

 
MaRDA is community network of people and projects that 
are developing the open, accessible, and interoperable 
materials data and infrastructure needed to fuel materials 
discovery.  The MGI strategic plan called out MaRDA as an 
emerging national network to accelerate implementation 
and adoption of materials innovation infrastructure 
through convergence of ideas, people, data, and tools. 
MaRDA has grown rapidly with over 285 people attending 
and participating in its 2022 Annual Meeting. By bringing 
together diverse materials data stakeholders, MaRDA 
provides a forum and framework to build the social and 
technological bridges needed for open sharing and reuse 
of data. A central finding of the forums was identification 
of shared vision; this focus on “why” links the community 
and incentivizes coordinated work. By connecting the 
community, MaRDA provides a framework to put the 
“who” into the equation. MaRDA is unique in the materials 
domain in democratizing opportunities for leadership and 
the deepening of community connection.  Combining 
leadership and consensus around the challenging issues of 
data sharing, culture, and use will be central to leveraging 
the shared 2DILM vision and roadmap.  
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III.2.3. Needed Community Actions 
 
These compounding issues of resistance and culture bring us to the conclusion that a future built on 
FAIR data will require moving beyond carrots and sticks to incentivize and motivate the community. 
Cultures don’t change by mandate, but by community action driven by common purpose.122 The MGI 
strategic plan recognized the importance of building community for this reason and has called for 
development of a National Materials Data Network such as the growing Materials Research Data 
Alliance.25,31  A central outcome of the forum was emergence of a central, shared future vision for 
2DILM materials.  This vision provides a shared sense of purpose and opportunity.  Embodied in the 
roadmap to reach that vision is a new incentive structure with goals that require FAIR data and 
community-level effort. Such aligned purpose removes resistance to culture change and positions the 
2DILM community with the aligned incentives and motivations needed to inherently value the work 
they can define together to create data resources they need and cannot create alone. 
 
In considering practical aspects of implementing FAIR as a community rather than as individual 
research groups or collaborations, several points emerged.  First, experience over even the few years 
since the data supplements show that FAIR is not a technical problem awaiting resources, FAIR must 
be developed in concert with meaningful research applications from across the data lifecycle, and FAIR 
is not a static benchmark that can be solved and checked off.  As applications and science changes 
demands for data discoverability, access, and interoperability will evolve. Metadata standards will 
evolve as uses of data change and new information is required. New methods of modeling and 
characterization will develop and interoperability will be challenged as real-time and autonomous 
concepts grow. Solutions developing FAIR data are research in their own right but occupy the unusual 
position of requiring development in parallel to implementation and use. It is anticipated that 
concepts of data stewardship will evolve and become more common either embedded in research 
groups or as part of the skillset of investigators throughout projects. Most importantly, data resources 
across projects scales and data lifecycles will require sustained efforts. On-going community efforts 
will be required to frame and support those efforts for the involving investigator and stakeholder 
landscape.  Such community efforts are likely best built from focused communities such as 2DILM and 
provide an opportunity to focus FAIR development to avoid outsized consumption of efforts and 
resources. 
 
We imagine that an immediate near-term step would be for the community to agree on a set of 
expectations for what data should be made available, and in what form, alongside publications. The 
co-chairs of this report all strongly agree that, at a minimum, the data contained in the figures and 
tables of a manuscript should also be provided in a machine-readable form, at a URL or DOI that does 
not require contacting the corresponding author to access, with an explicit license. Since these are the 
data upon which scientific conclusions are based, it is reasonable to expect that such data has already 
been curated in the process of writing up the results. Lack of facilities by which to publish these 
artifacts is not an excuse -- multiple platforms (including Zenodo,123 the NIST MDF,124 GitHub,125 many 
university library services,126-128 and 2DCCs129 and PARADIMs130 public data efforts) exist to enable 
public release of such data artifacts. Concerns over mis-use by others do not apply, since these are all 
data already present in the manuscript. In other cases where this has been done (e.g. crystal 
structures and ICSD and CSD), the quality of scientific output has increased dramatically. Publications 
already become public domain now in many countries. Will the community rise to the challenge and 
achieve the same for data?  
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Growth of such data archives will also provide incentive and opportunity to develop interoperability 
required to fuel reuse to derive full value from the resource.   In time, we envision standardization of 
formats and contextual metadata as well as new methods and programs to take advantage of the rich 
data contained therein. Publication of data, however, is the key first step. 
 

IV. Future Considerations 
 

“It is tough to make predictions, especially about the future.” – Yogi Berra [attributed to many, and 
true] 

 
This report focuses on concrete actions and immediate directions to realize the potential of the 
convergence of data science with materials discovery and 2D interfacial and layered materials. There 
were many interesting threads reaching beyond materials science that were identified through the 
forum process, a number of which are likely deserving of future fleshing out independently in their 
own right. It would, however, be foolish of us to predict which will resonate most strongly as the 
community evolves, and thus encourage all to review the questions and challenges given in Appendix 
C and find what resonates with them.  

V. Conclusions 

 
 
The extended community engagement established research towards the prediction of synthesis 
outcomes and the achieving of AI-assisted and autonomous synthesis as having the utmost promise 
and importance in advancing 2DILM synthesis. Equally important are community actions -- the need to 
advance broad application of best practices and principles in data curation and community use and 
the need for sustained workforce development that spans materials disciplines and enable both 
develop and application of burgeoning data-centric approaches.  Indeed, the interconnection of these 
four identified themes of synthesis prediction, autonomy, workforce development, and data 
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stewardship are mileposts of a community roadmap to transform materials research and provide 
significant impacts on critical societal sectors including energy, health care, communications, 
manufacturing, and space technology. Our own perspective is that while data has always placed a 
central role in materials research and materials discovery, the tools of data science are resulting in a 
revolution similar to what occurred when computing technology became ubiquitous. Now is the time 
to capitalize on it and bring about a new era in materials discovery. 
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VII. Appendices 
 

A. Appendix A 

What is this project? 
This was an initiative of the National Science Foundation in collaboration with the NSF-funded 
materials innovation platforms PARADIM and 2DCC arising out of a sea of data activities within 2D 
materials community over the last 5 years. 
 

Why did we do it? 
Materials research is at a crossroads, and we felt that this was the best time to create a roadmap for 
synthesis and discovery within interfacial and layered materials over the next decade and to continue 
to build a community who will work together and share knowledge. 
 

Why now? 
There is an alignment of the planets. There is rapid advancement of data science and AI/ML 
methodologies and there is significant investment and recommended further investment in national 
midscale synthesis and characterization capabilities. The next MGI strategic plan has been released 
and, at the same time, a new NSF Directorate for Technology, Innovation and Partnerships (TIP) is just 
getting off the ground.  
 

What is the output? 
The most tangible output is a roadmap in the form of this report to capture actionable items from the 
Forums that can be used by the community, the Materials Innovation Platforms, and funding bodies. 
At the same time, we anticipate building even stronger connections between participants that will 
continue to grow the community. 
 

How did we scope the problem? 
We started by scoping the problem to identify core themes of interest to the community. We did this 
through an online questionnaire designed to elicit their views of the most interesting questions that 
might be addressed by (or within) 2D Interfacial Materials in the next 10-15 years. 
 
Raw responses to the questionnaire (Table C1) were then reviewed by the core team. 
 
The community then sorted these questions to arrive at a broad set of themes to explore at the first 
workshop. 
 

Who attended the forums, and when were they held? 
Attendees are listed in Appendix B. Attendees were drawn from across a variety of communities 
across both data and materials science, being selected to cover the breadth and depth of the 
community from a pool of applicants. The first forum was held virtually and focused on: 
 
January 20th, 2022: Developing Future Headlines and exploring the challenge areas. 
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January 21st, 2022: Prioritizing Antecedent or Fundamental Research and exploring the obstacles. 
 
A second forum was held virtually on March 10th, 2022 and focused on elaborating precise actions and 
directions to achieve the vision and overcome the challenges and obstacles identified in the January 
forum. 
 

How did we develop the “Future Headlines”? 
In order to explore the challenges and opportunities over the next 10 to 15 years that might respond 
to a solution created by 2D and Interfacial Materials we invited participants to imagine a future where 
that challenge or opportunity had already been addressed so that we could then step back and 
identify the fundamental research that will be required in the medium term to achieve those future 
headlines. 
 
This was a deliberately creative approach where the output was less important than the process. It 
helped participants identify future opportunities and challenges beyond their own day-to-day 
research and avoids the old trope: "To a person with a hammer, every problem looks like a nail". The 
process of developing the headlines was designed to stimulate and inspire the ambition and breadth 
of our thinking as we moved through the workshop. 
 
Headlines developed through this process are given in Table C2. 
 

How did we align around the Research Challenges (the things we would need to 
understand if we were to achieve the “Future Headlines”)? 
Having developed the “Future Headlines”, the participants explored, added to and refined the clusters 
of challenges (the research questions that would have to be answered if we were to achieve the 
Future Headlines), which, if answered, might lead to a step-change in the field of 2D Interfacial 
Materials. These are given in Table C3. 
 

How did we identify the Fundamental or Antecedent Research that might be 
necessary to address the challenges? 
For each of the high-level challenges we explored what antecedent research might be required in 
order to answer those questions and captured them in the form of Google Documents (one for each 
high-level question). We then asked participants to prioritize this research to give a clear roadmap of 
what needs to be done and in what order. We also asked participants to identify the obstacles that 
would hinder the antecedent research. The obstacles are summarized in Table C4. 
 

How did we arrive at the themes to elaborate on and provide directions for in this 
report? 
At the conclusion of the January forum, the core team along with the steering committee evaluated 
process and found substantial similarity amongst portions of the challenge clusters arising from the 
forum, to arrive at four theme areas, Table C5. We further felt that actionable areas had not been 
sufficiently fleshed out in the first forum. We thus ran a one-day forum on March 10th, 2022 to gather 
further community insight into elaboration of what is needed to make transformative progress. The 
outputs of this forum were then independently synthesized by the MIP directors and the core team. 
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The core team then took both of these interpretations, along with additional feedback from the 
steering committee, mentors, and other stakeholders to complete the first draft of this report.  
 

How was public comment solicited? 
There was a multi-month public comment period in summer 2022, with multiple avenues of feedback, 
including an anonymous web form at https://www.materialsarchive.org/2dilm-
report2022/feedback.php . Feedback from this process was incorporated into the final version. 

 

What are next steps?  
We anticipate this report to be a beginning – a preface if you will – to a renaissance in the community 
about making meaningful advances in materials discovery to realize the potential of 2D ILM materials 
through advances in data science, and hope that it stimulates significant community and research 
efforts to bring the potential of the field to fruition. We hope that others use and build upon this 
report as we enter a new era of materials discovery.  

https://www.materialsarchive.org/2dilm-report2022/feedback.php
https://www.materialsarchive.org/2dilm-report2022/feedback.php
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B. Appendix B 
 
January 2022 Forum: Future Headlines and Challenge Clusters Participants 

Douglas Adamson Professor University of Connecticut 

Mahshid Ahmadi Assistant Professor University of Tennessee, Knoxville 

Virginia Ayres Associate Professor Michigan State University 

Prasanna V. Balachandran Assistant Professor University of Virginia 

Alexander Balandin Distinguished Professor or ECE 
and UC Presidential Chair Pro-
fessor of Materials Science 

University of California Riverside 

Art Counts Engineer Apple 

Albert Davydov Group Leader NIST 

Aida Ebrahimi Assistant Professor Penn State University 

Panchapakesan Ganesh Senior R&D Staff Scientist Oak Ridge National Laboratory 

Feliciano Giustino W.A. "Tex" Moncrief, Jr. Chair 
of Quantum Materials Engi-
neering 

The University of Texas at Austin 

Pelagia Gouma Professor The Ohio State University 

John Gregoire Research Professor Caltech 

Geoffroy Hautier Associate Professor Dartmouth College 

Michael Heuken VP Advanced Technologies Aixtron 

Pinshane Huang Associate Professor University of Illinois at Urbana-Champaign 

Piran Kidambi Assistant Professor Vanderbilt University 

Mercouri Knaatzidis Professor Northwestern University 

Tillmann Kubis Research Assistant Professor Purdue University 

Peng Li Assistant Professor Auburn University 

Vinod Menon Professor of Physics City College & Grad Center of CUNY 

Vincent Meunier Professor Rensselaer Polytechnic Institute 

Rohan Mishra Assistant Professor Washington University at St. Louis 

John MItchell Senior Scientist Argonne National Laboratory 

Kasra Momeni Associate Professor The University of Alabama 

Martin Mourigal Associate Professor Georgia Tech 

Krishna Rajan SUNY Distinguished Professor 
& Erich Bloch Chair 

University at Buffalo 

Jayakanth Ravichandran Assistant Professor University of Southern California 

Wesley Reinhart Assistant Professor Penn State University 

Thomas Searles Associate Professor University of Illinois Chicago 

Daniel Shoemaker Associate Professor University of Illinois 

Derek Stewart Technologist Western Digital 

Christopher Stiles Senior Research Scientist Johns Hopkins University Applied Physics 
Laboratory 

Eric Toberer Professor Colorado School of Mines 

Arend van der Zande Associate Professor University of Illinois at Urbana-Champaign 

Patrick Vora Associate Professor George Mason University 
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March 2022 Workshop: Addressing the Challenges Participants 

How might we better predict outcomes from actual synthesis conditions? 
Paul Canfield  Distinguished Professor Iowa State University and Ames 

Laboratory 

Stefano Curtarolo  Edmund T. Pratt Jr. School Distin-
guished Professor of Mechanical 
Engineering and Materials Science 

Duke University 

Geoffroy Hautier  Hodgson Family Associate Profes-
sor of Engineering 

Dartmouth University 

Igor Levin Lead, Materials Structure and 
Data Group 

National Institute of Standards 
and Technology 

Zi-Kui Liu  Professor Pennsylvania State University 

Alexandra Navrotsky  Distinguished Professor Emeritus UC Davis 

How might we achieve AI-assisted and autonomous synthesis? 
Darryl Barlett  CEO k-space Associates Inc. 

Benji Maruyama  Principal Materials Research Engi-
neer 

Air Force Research Laboratory 

Peter Rosenthal Manager, Technology and Product 
Development 

Coherent, Inc. 

Daniel Shoemaker  Associate Professor University of Illinois at Urbana-
Champaign 

Rudolf M. Tromp  Scientist and Professor IBM Research and Leiden Univer-
sity 

How might we prepare practitioners to better use data to accelerate discovery? 
Mahshid Ahmadi  Assistant Professor University of Tennessee - Knoxville 

Vasant Honavar Huck Chair in Biomedical Data Sci-
ences and Artificial Intelligence 

Pennsylvania State University 

Bryce Meredig  Co-Founder and Chief Science Of-
ficer 

Citrine Informatics 

Klara Nahrstedt Grainger Distinguished Chair in 
Engineering 

University of Illinois Urbana-
Champaign 

Alex Norquist  Professor Haverford College 

Wes Reinhart  Assistant Professor Pennsylvania State University 

Olga Wodo Associate Professor SUNY Buffalo 

How might we promote knowledge sharing? 
Vin Crespi  Distinguished Professor of Physics Pennsylvania State University 

Laura Franklin  Portfolio Manager, Materials 
Open Research 

Taylor & Francis 

Jane Greenberg  Alice B. Kroeger Professor and Di-
rector, Metadata Research Center 

Drexel University 

Linda Hung Senior Research Scientist Toyota Research Institute 

Martin Mcbriarty Scientist EMD Electronics 

Jim Warren  Director, NIST Center for Theoreti-
cal and Computational Materials 
Science 

National Institute of Standards 
and Technology 

 


